Hi Folks,
I'm looking to do Confidence bands around LOESS smoothing curve.
If found the older post about using the Standard error to approximate it
https://stat.ethz.ch/pipermail/r-help/2008-August/170011.html
Also found this one
http://www.r-bloggers.com/sab-r-metrics-basics-of-loess-regression/
But they both seem to be approximations of confidence intervals and I was
wonder if there was a way to get the CIs?
Below is the code I have so far and my data is no the net.
Any help would be greatly appreciated.
Take Care
David
-----------------------------
#Load your data. Is located on the web at the address below
mydata <- read.csv("http://doylesdartden.com/smoothing.csv", sep=",")
mydata <- read.table("x.csv", header=TRUE, sep=",",)
attach(mydata)
reg1 <- lm(Y_Axis_Parameter~X_Axis_Parameter)
par(cex=1)
* *
* *
#Plots the data but makes nondetects a different color and type based on
column D_Y_Axis_Parameter being a 0 for ND and 1 for detect.
plot(X_Axis_Parameter, Y_Axis_Parameter, col=ifelse(D_Y_Axis_Parameter,
"black", "red"),ylab = "Y_Axis_Parameter", pch=ifelse(D_Y_Axis_Parameter,
19, 17), cex = 0.7)
plx<-predict(loess(Y_Axis_Parameter ~ X_Axis_Parameter, data=mydata), se=T)
lines(mydata$X_Axis_Parameter,plx$fit+2*plx$s, lty=2) #rough & ready CI
lines(mydata$X_Axis_Parameter,plx$fit-2*plx$s, lty=2)
# Apply loess smoothing using the default span value of 0.8. You can
change the curve by changing the span value.
y.loess <- loess(y ~ x, span=0.8, data.frame(x=X_Axis_Parameter,
y=Y_Axis_Parameter))
# Compute loess smoothed values for all points along the curve
y.predict <- predict(y.loess, data.frame(x=X_Axis_Parameter))
# Plots the curve.
lines(X_Axis_Parameter,y.predict)
* *
#Add Legend to graY_Axis_Parameter. You can change the size of the box by
changing cex = 0.75 Large # makes it larger.
legend("topleft", c("Smoothing Curve", "Detected", "NonDetect"), col = c(1,
"black","red"), cex = 0.75,
text.col = "black", lty = c(1 ,-1, -1), pch = c(-1, 19, 17),
merge = TRUE, bg = 'gray90')
* *
#Add title
title(main="Locally Weighted Scatterplot Smoothing Curve")
# Done